北F网 中华石杉 Spark大型项目实战:电商用户行为分析大数据平台138讲

北F网 中华石杉 Spark大型项目实战:电商用户行为分析大数据平台138讲 IT教程 第1张

文件目录:/Spark大型项目实战:电商用户行为分析大数据平台138讲
├──001.课程介绍.mp4
├──002.课程环境搭建-CentOS 6.4集群搭建(1).rar
├──002.课程环境搭建-CentOS 6.4集群搭建(2).rar
├──003.课程环境搭建-hadoop-2.5.0-cdh5.3.6集群搭建.rar
├──004.课程环境搭建-hive-0.13.1-cdh5.3.6安装.flv
├──005.课程环境搭建-zookeeper-3.4.5-cdh5.3.6集群搭建.flv
├──006.课程环境搭建-kafka_2.9.2-0.8.1集群搭建_rec.flv
├──007.课程环境搭建-flume-ng-1.5.0-cdh5.3.6安装_rec.flv
├──008.课程环境搭建-离线日志采集流程介绍_rec.flv
├──009.课程环境搭建-实时数据采集流程介绍_rec.flv
├──010.课程环境搭建-Spark 1.5.1客户端安装以及基于YARN的提交模式_rec.rar
├──011.用户访问session分析-模块介绍_rec.flv
├──012.用户访问session分析-基础数据结构以及大数据平台架构介绍_rec.flv
├──013.用户访问session分析-需求分析_rec.flv
├──014.用户访问session分析-技术方案设计_rec.flv
├──015.用户访问session分析-数据表设计_rec.flv
├──016.用户访问session分析-Eclipse工程搭建以及工具类说明_rec.flv
├──017.用户访问session分析-开发配置管理组件_rec.flv
├──018.用户访问session分析-JDBC原理介绍以及增删改查示范_rec.flv
├──019.用户访问session分析-数据库连接池原理_rec.flv
├──020.用户访问session分析-单例设计模式_rec.rar
├──021.用户访问session分析-内部类以及匿名内部类_rec.flv
├──022.用户访问session分析-开发JDBC辅助组件(上)_rec.flv
├──023.用户访问session分析-开发JDBC辅助组件(下)_rec.flv
├──024.用户访问session分析-JavaBean概念讲解_rec.flv
├──025.用户访问session分析-DAO模式讲解以及TaskDAO开发_rec.flv
├──026.用户访问session分析-工厂模式讲解以及DAOFactory开发_rec.flv
├──027.用户访问session分析-JSON数据格式讲解以及fastjson介绍_rec.flv
├──028.用户访问session分析-Spark上下文构建以及模拟数据生成_rec.flv
├──029.用户访问session分析-按session粒度进行数据聚合_rec.flv
├──030.用户访问session分析-按筛选参数对session粒度聚合数据进行过滤_rec.rar
├──031.用户访问session分析-session聚合统计之自定义Accumulator_rec.flv
├──032.用户访问session分析-session聚合统计之重构实现思路与重构session聚合_rec.flv
├──033.用户访问session分析-session聚合统计之重构过滤进行统计_rec.flv
├──034.用户访问session分析-session聚合统计之计算统计结果并写入MySQL_rec.flv
├──035.用户访问session分析-session聚合统计之本地测试_rec.flv
├──036.用户访问session分析-session聚合统计之使用Scala实现自定义Accumulator_rec.flv
├──037.用户访问session分析-session随机抽取之实现思路分析_rec.flv
├──038.用户访问session分析-session随机抽取之计算每天每小时session数量_rec.flv
├──039.用户访问session分析-session随机抽取之按时间比例随机抽取算法实现_rec.flv
├──040.用户访问session分析-session随机抽取之根据随机索引进行抽取_rec.rar
├──041.用户访问session分析-session随机抽取之获取抽取session的明细数据_rec.flv
├──042.用户访问session分析-session随机抽取之本地测试_rec.flv
├──043.用户访问session分析-top10热门品类之需求回顾以及实现思路分析_rec.flv
├──044.用户访问session分析-top10热门品类之获取session访问过的所有品类_rec.flv
├──045.用户访问session分析-top10热门品类之计算各品类点击、下单和支付的次数_rec.flv
├──046.用户访问session分析-top10热门品类之join品类与点击下单支付次数_rec.flv
├──047.用户访问session分析-top10热门品类之自定义二次排序key_rec.flv
├──048.用户访问session分析-top10热门品类之进行二次排序_rec.flv
├──049.用户访问session分析-top10热门品类之获取top10品类并写入MySQL_rec.flv
├──050.用户访问session分析-top10热门品类之本地测试_rec.rar
├──051.用户访问session分析-top10热门品类之使用Scala实现二次排序_rec.flv
├──052.用户访问session分析-top10活跃session之开发准备以及top10品类RDD生成_rec.flv
├──053.用户访问session分析-top10活跃session之计算top10品类被各sessoin点击的次数_rec.flv
├──054.用户访问session分析-top10活跃session之分组取TopN算法获取top10活跃session_rec.flv
├──055.用户访问session分析-top10活跃session之本地测试以及阶段总结_rec.flv
├──056.用户访问session分析-性能调优之在实际项目中分配更多资源_rec.flv
├──057.用户访问session分析-性能调优之在实际项目中调节并行度_rec.flv
├──058.用户访问session分析-性能调优之在实际项目中重构RDD架构以及RDD持久化_rec.flv
├──059.用户访问session分析-性能调优之在实际项目中广播大变量_rec.flv
├──060.用户访问session分析-性能调优之在实际项目中使用Kryo序列化 _rec.rar
├──061.用户访问session分析-性能调优之在实际项目中使用fastutil优化数据格式_rec.flv
├──062.用户访问session分析-性能调优之在实际项目中调节数据本地化等待时长_rec.flv
├──063.用户访问session分析-JVM调优之原理概述以及降低cache操作的内存占比_rec.flv
├──064.用户访问session分析JVM调优之调节executor堆外内存与连接等待时长_rec.flv
├──065.用户访问session分析-Shuffle调优之原理概述_rec.flv
├──066.用户访问session分析-Shuffle调优之合并map端输出文件_rec.flv
├──067.用户访问session分析-Shuffle调优之调节map端内存缓冲与reduce端内存占比 _rec.flv
├──068.用户访问session分析-Shuffle调优之HashShuffleManager与SortShuffleManager_rec.flv
├──069.用户访问session分析-算子调优之MapPartitions提升Map类操作性能 _rec.flv
├──070.用户访问session分析-算子调优之filter过后使用coalesce减少分区数量 _rec.rar
├──071.用户访问session分析-算子调优之使用foreachPartition优化写数据库性能_rec.flv
├──072.用户访问session分析-算子调优之使用repartition解决Spark SQL低并行度的性能问题_rec.flv
├──073.用户访问session分析-算子调优之reduceByKey本地聚合介绍_rec.flv
├──074.用户访问session分析-troubleshooting之控制shuffle reduce端缓冲大小以避免OOM _rec.flv
├──075.用户访问session分析-troubleshooting之解决JVM GC导致的shuffle文件拉取失败 _rec.flv
├──076.用户访问session分析-troubleshooting之解决YARN队列资源不足导致的application直接失败 _rec.flv
├──077.用户访问session分析-troubleshooting之解决各种序列化导致的报错_rec.flv
├──078.用户访问session分析-troubleshooting之解决算子函数返回NULL导致的问题 _rec.flv
├──079.用户访问session分析-troubleshooting之解决yarn-client模式导致的网卡流量激增问题_rec.flv
├──080.用户访问session分析-troubleshooting之解决yarn-cluster模式的JVM栈内存溢出问题 _rec.flv
├──081.用户访问session分析-troubleshooting之错误的持久化方式以及checkpoint的使用_rec.flv
├──082.用户访问session分析-数据倾斜解决方案之原理以及现象分析_rec.flv
├──083.用户访问session分析-数据倾斜解决方案之聚合源数据以及过滤导致倾斜的key_rec.flv
├──084.用户访问session分析-数据倾斜解决方案之提高shuffle操作reduce并行度_rec.flv
├──085.用户访问session分析-数据倾斜解决方案之使用随机key实现双重聚合_rec.flv
├──086.用户访问session分析-数据倾斜解决方案之将reduce join转换为map join_rec.flv
├──087.用户访问session分析-数据倾斜解决方案之sample采样倾斜key单独进行join_rec.flv
├──088.用户访问session分析-数据倾斜解决方案之使用随机数以及扩容表进行join_rec.flv
├──089.页面单跳转化率-模块介绍_rec.flv
├──090.页面单跳转化率-需求分析、技术方案设计、数据表设计 _rec.rar
├──091.页面单跳转化率-编写基础代码_rec.flv
├──092.页面单跳转化率-页面切片生成以及页面流匹配算法实现_rec.flv
├──093.页面单跳转化率-计算页面流起始页面的pv_rec.flv
├──094.页面单跳转化率-计算页面切片的转化率 _rec.flv
├──095.页面单跳转化率-将页面切片转化率写入MySQL _rec.flv
├──096.页面单跳转化率-本地测试_rec.flv
├──097.页面单跳转化率-生产环境测试 _rec.flv
├──098.用户访问session分析-生产环境测试_rec.flv
├──099.各区域热门商品统计-模块介绍_rec.flv
├──100.各区域热门商品统计-需求分析、技术方案设计以及数据设计_rec.flv
├──101.各区域热门商品统计-查询用户指定日期范围内的点击行为数据_rec.flv
├──102.各区域热门商品统计-异构数据源之从MySQL中查询城市数据_rec.flv
├──103.各区域热门商品统计-关联城市信息以及RDD转换为DataFrame后注册临时表_rec.flv
├──104.各区域热门商品统计-开发自定义UDAF聚合函数之group_concat_distinct()_rec.flv
├──105.各区域热门商品统计-查询各区域各商品的点击次数并拼接城市列表 _rec.flv
├──106.各区域热门商品统计-使用开窗函数统计各区域的top3热门商品_rec.flv
├──107.各区域热门商品统计-使用内置case when函数给各个区域打上级别标记_rec.flv
├──108.各区域热门商品统计-将结果数据写入MySQL中_rec.flv
├──109.各区域热门商品统计-Spark SQL数据倾斜解决方案_rec.flv
├──110.各区域热门商品统计-生产环境测试_rec.rar
├──111.广告点击流量实时统计-需求分析、技术方案设计以及数据设计_rec.flv
├──112.广告点击流量实时统计-为动态黑名单实时计算每天各用户对各广告的点击次数_rec.flv
├──113.广告点击流量实时统计-使用高性能方式将实时计算结果写入MySQL中_rec.flv
├──114.广告点击流量实时统计-过滤出每个batch中的黑名单用户以生成动态黑名单_rec.flv
├──115.广告点击流量实时统计-基于动态黑名单进行点击行为过滤_rec.flv
├──116.广告点击流量实时统计-计算每天各省各城市各广告的点击量 _rec.flv
├──117.广告点击流量实时统计-计算每天各省的top3热门广告_rec.flv
├──118.广告点击流量实时统计-计算每天各广告最近1小时滑动窗口内的点击趋势_rec.flv
├──119.广告点击流量实时统计-实现实时计算程序的HA高可用性_rec.flv
├──120.广告点击流量实时统计-对实时计算程序进行性能调优(正确)_rec.rar
├──121.广告点击流量实时统计-生产环境测试 _rec.flv
├──122.课程总结-都学到了什么?_rec.flv
├──123.Spark 2.0-新特性介绍 _rec.flv
├──124.Spark 2.0-易用性:标准化SQL支持以及更合理的API_rec.flv
├──125.Spark 2.0-高性能:让Spark作为编译器来运行_rec.flv
├──126.Spark 2.0-新特性介绍-智能化:Structured Streaming介绍_rec.flv
├──127.Spark 2.0-新特性介绍-Spark 1.x的Volcano Iterator Model深度剖析_rec.flv
├──128.Spark 2.0-新特性介绍-whole-stage code generation技术和vectorization技术_rec.flv
├──129.Spark 2.0-Spark 2.x与1.x对比以及分析、学习建议以及使用建议_rec.flv
├──130.Spark 2.0-课程环境搭建:虚拟机、CentOS、Hadoop、Spark等_rec.rar
├──131.Spark 2.0-开发环境搭建:Eclipse+Maven+Scala+Spark_rec.flv
├──132.用户活跃度分析:模块介绍以及交互式用户行为分析系统的解释 _rec.flv
├──133.用户活跃度分析:统计指定时间内访问次数最多的10个用户_rec.flv
├──134.统计指定时间内购买金额最多的10个用户_rec.flv
├──135.基于Spark 2.0的用户活跃度分析:统计最近一个周期相比上一个周期访问次数增长最多的10个用户_rec.flv
├──136.基于Spark 2.0的用户活跃度分析:统计最近一个周期相比上一个周期购买金额增长最多的10个用户 _rec.flv
├──137.基于Spark 2.0的用户活跃度分析:统计指定注册时间范围内头7天访问次数最高的10个用户 _rec.flv
├──138.基于Spark 2.0的用户活跃度分析:统计指定注册时间范围内头7天购买金额最高的10个用户_rec.rar
└──课件文档代码
├──000.第一次升级软件包+课程代码[113-245].zip
├──000.课程代码+软件包.rar
├──000.课件、代码、软件包.rar
├──000.课件文档代码[123-138].rar
└──000.软件安装包.rar

北F网 中华石杉 Spark大型项目实战:电商用户行为分析大数据平台138讲 IT教程 第2张

相关下载

点击下载

参与评论